The amino-terminal tails of histones H2A and H3 coordinate efficient base excision repair, DNA damage signaling and postreplication repair in Saccharomyces cerevisiae

نویسندگان

  • Rithy Meas
  • Michael J. Smerdon
  • John J. Wyrick
چکیده

Histone amino-terminal tails (N-tails) are required for cellular resistance to DNA damaging agents; therefore, we examined the role of histone N-tails in regulating DNA damage response pathways in Saccharomyces cerevisiae. Combinatorial deletions reveal that the H2A and H3 N-tails are important for the removal of MMS-induced DNA lesions due to their role in regulating the basal and MMS-induced expression of DNA glycosylase Mag1. Furthermore, overexpression of Mag1 in a mutant lacking the H2A and H3 N-tails rescues base excision repair (BER) activity but not MMS sensitivity. We further show that the H3 N-tail functions in the Rad9/Rad53 DNA damage signaling pathway, but this function does not appear to be the primary cause of MMS sensitivity of the double tailless mutants. Instead, epistasis analyses demonstrate that the tailless H2A/H3 phenotypes are in the RAD18 epistasis group, which regulates postreplication repair. We observed increased levels of ubiquitylated PCNA and significantly lower mutation frequency in the tailless H2A/H3 mutant, indicating a defect in postreplication repair. In summary, our data identify novel roles of the histone H2A and H3 N-tails in (i) regulating the expression of a critical BER enzyme (Mag1), (ii) supporting efficient DNA damage signaling and (iii) facilitating postreplication repair.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA repair mechanisms and the bypass of DNA damage in Saccharomyces cerevisiae.

DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex ...

متن کامل

Yeast high mobility group protein HMO1 stabilizes chromatin and is evicted during repair of DNA double strand breaks

DNA is packaged into condensed chromatin fibers by association with histones and architectural proteins such as high mobility group (HMGB) proteins. However, this DNA packaging reduces accessibility of enzymes that act on DNA, such as proteins that process DNA after double strand breaks (DSBs). Chromatin remodeling overcomes this barrier. We show here that the Saccharomyces cerevisiae HMGB prot...

متن کامل

Effects of bleomycin on growth kinetics and survival of Saccharomyces cerevisiae: a model of repair pathways.

In order to analyze the roles of some repair genes in the processing of bleomycin-induced DNA damage and, especially, the interrelationships among the involved repair pathways, we investigated the potentially lethal effect of bleomycin on radiosensitive mutants of Saccharomyces cerevisiae defective in recombination, excision, and RAD6-dependent DNA repair. Using single, double, and triple rad m...

متن کامل

Stimulation of DNA repair in Saccharomyces cerevisiae by Ginkgo biloba leaf extract.

Many extracts prepared from plants traditionally used for medicinal applications contain a variety of phytochemicals with antioxidant and antigenotoxic activity. In this work we measured the DNA protective effect of extracts of Ginkgo biloba leaves from oxidative stress using Saccharomyces cerevisiae as experimental model. The extract improved viability of yeast cells under oxidative stress imp...

متن کامل

Checkpoint arrest signaling in response to UV damage is independent of nucleotide excision repair in Saccharomyces cerevisiae.

The recognition of DNA double-stranded breaks or single-stranded DNA gaps as a precondition for cell cycle checkpoint arrest has been well established. However, how bulky base damage such as UV-induced pyrimidine dimers elicits a checkpoint response has remained elusive. Nucleotide excision repair represents the main pathway for UV dimer removal that results in strand interruptions. However, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2015